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Abstract— Various instruments are used to create images of
the Earth and other objects in the universe in a diverse set
of wavelength bands with the aim of understanding natural
phenomena. Sometimes these instruments are built in a phased
approach, with additional measurement capabilities added in
later phases. In other cases, technology may mature to the point
that the instrument offers new measurement capabilities that
were not planned in the original design of the instrument. In
still other cases, high resolution spectral measurements may be
too costly to perform on a large sample and therefore lower
resolution spectral instruments are used to take the majority of
measurements. Many applied science questions that are relevant
to the earth science remote sensing community require analysis of
enormous amounts of data that were generated by instruments
with disparate measurement capabilities. In past work [1], we
addressed this problem using Virtual Sensors: a method that uses
models trained on spectrally rich (high spectral resolution) data
to ”fill in” unmeasured spectral channels in spectrally poor (low
spectral resolution) data. We demonstrated this method by using
models trained on the high spectral resolution Terra MODIS
instrument to estimate what the equivalent of the MODIS 1.6
micron channel would be for the NOAA AVHRR/2 instrument.
The scientific motivation for the simulation of the 1.6 micron
channel is to improve the ability of the AVHRR/2 sensor to
detect clouds over snow and ice. This work contains preliminary
experiments demonstrating that the use of spatial information
can improve our ability to estimate these spectra.

I. INTRODUCTION

THE idea behind Virtual Sensors is that data mining algo-
rithms trained on spectrally-rich (high spectral resolution)

data can be used to generate estimates of what those measure-
ments would have been for data that are spectrally-poor (low
spectral resolution), This enables us to glean more information
from that spectrally-poor data. This is an important problem to
solve because spectrally-poor data may be available for longer
periods of time than spectrally-rich data. This happens because
of improvements in measurement capabilities due to instru-
ments being built in phases, technological improvements, or
the need to reduce measurement costs. Many applied science
questions that are relevant to the remote sensing community
need to be addressed by analyzing very large amounts of data
that were generated by instruments with different measurement
capabilities.

For example, consider the relationship between the
AVHRR/2 (Advanced Very High Resolution Radiometer) and
the MODIS (Moderate Resolution Imaging Spectroradiometer)
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instruments. AVHRR/2 generates images in only five spectral
channels, whereas MODIS generates images in 36 different
spectral channels. However, AVHRR/2 data has been available
since 1981 whereas MODIS has only been available since
1999. MODIS channels 1, 2, 20, 31, and 32 correspond
reasonably well to the five AVHRR/2 channels. We can use
data mining methods to model any MODIS channel not
available in AVHRR/2 as a function of these five MODIS
channels. We can then use the learned model to generate an
estimate of what that MODIS channel would have been had
it been available in AVHRR/2 given the five actual AVHRR/2
channels as input. If the learned model is of high quality, we
can use it to obtain estimates of MODIS channels for years
prior to 1999 when MODIS came on-line. We refer to this
as a Virtual Sensor because it estimates unmeasured spectra.
We use Virtual Sensors to generate an estimate of MODIS
channel 6 (1.6 microns) for AVHRR/2 because a spectral
channel at 1.6 microns is useful for discriminating clouds
from snow- and ice-covered surfaces. We chose this task to
demonstrate the usefulness of Virtual Sensors. However, in
our previous work, we did not take spatial information into
account, i.e., predictions were generated for each pixel using
only the other channels at that pixel. In this work, we perform
some preliminar experiments which demonstrate the extent to
which spatial information can improve results. Note that, at
the resolution of the images we are working with (1.25km), it
is not obvious that spatial information would help.

In the next section, we briefly discuss the scientific moti-
vation for using Virtual Sensors to simulate MODIS channel
6 for the AVHRR/2 instrument. In Section III, we describe
Virtual Sensors formally and as a general method going
beyond the specific application that we discuss in Section II.
In Section III, we discuss the methods we use to incorporate
spatial information. In Section IV we discuss our experimental
results. Section V concludes the paper and discusses future
work.

II. VIRTUAL SENSORS FOR CRYOSPHERE ANALYSIS

Intensification of global warming in recent decades has
raised interest in year-to-year and decadal-scale climate vari-
ability in the Polar Regions. This is because these regions
are believed to be among the most sensitive and vulnerable
to climatic changes. The enhanced vulnerability of the Polar
Regions is believed to result from several positive feedbacks,
including the temperature-albedo-melt feedback and the cloud-
radiation feedback. Recent observations of regional anomalies
in ice extent, thinning of the margins of the Greenland ice
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sheet, and reduction in the northern hemispheric snow cover,
may reflect the effect of these feedbacks. Remote sensing
products provide spatially and temporally continuous and
consistent information on several polar geophysical variables
over nearly three decades. This period is long enough to permit
evaluation of how several cryospheric variables change in
phase with each other and with the atmosphere and can help
to improve our understanding of the processes in the coupled
land-ice-ocean-atmosphere climate system. Cloud detection
over snow- and ice-covered surfaces is difficult using sensors
such as AVHRR/2. This is because of the lack of spectral
contrast between clouds and snow in the channels on the
earlier AVHRR/2 sensors. Snow and clouds are both highly
reflective in the visible wavelengths and often show little
contrast in the thermal infrared.

The AVHRR Polar Pathfinder Product (APP) consists of
twice daily gridded (at 1.25 and 5km spatial resolution) surface
albedo and temperature from 1981 to 2000. A cloud mask
accompanies this product but has been found to be inadequate,
particularly over the ice sheets [2]. The 1.6 micron channel on
the MODIS instrument as well as the AVHRR/3 sensor can
significantly improve the ability to detect clouds over snow
and ice. Therefore, by developing a virtual sensor to model
the MODIS 1.6 micron channel (channel 6) as a function
of the AVHRR/2 channels, we can improve the cloud mask
in the APP product, and subsequently improve the retrievals
of surface temperature and albedo in the product. In doing
so we will be able to improve the accuracy in documenting
seasonal and inter-annual variations in snow, ice sheet and sea
ice conditions since 1981.

III. VIRTUAL SENSORS IN GENERAL

In this section, we discuss Virtual Sensors in general, going
beyond the specific application discussed in section II. For
purposes of the discussion presented here, we model the data
as matrices of time series (following the notation in [3]). The
spatiotemporal random function Z(u, λ, t) is modeled as a
finite number n of spatially correlated time series with the
following representation:

Z(u, λ, t) = [Zu(λ, t)] (1)

= [Zu1(λ, t), Zu2(λ, t), ..., Zun
(λ, t)]T

In Equation 1, u represents the spatial coordinate, λ repre-
sents the vector of measured wavelength(s), and t represents
time. The superscript T indicates the transpose operator. If
multiple wavelengths are measured, then each Zi is actually a
matrix, and the function Z(u, λ, t) represents a data cube of
size (n×Λ×T ), where these symbols represent the number of
spatial locations, the total number of measured wavelengths,
and the total number of time samples, respectively. In this
notation, the spatial coordinate u represents the coordinates
(or index) of a measurement at a particular location in the
field of view. Conceptually, the equation above describes a set
of n (Λ×T ) matrices. In the event that the spatial coordinate
indexes image pixels, it is useful to think of Equation 1 as

describing a time series of data cubes (spectral images) of
size n × n × Λ.

Consider a situation where one is given a sensor S1 which
takes k spectral measurements in wavelength bands B1 =
{λ1, λ2, . . . , λk} at time t1. Suppose that we have another
sensor S2 which has a set of spectral measurements taken
at time t2, B2 = {λ1, λ2, . . . , λk, λk+1, λk+2, . . . , λk+l} that
partially overlaps the spectral features contained in B1 in
terms of power in the spectral bands. Thus, B1 (or, in
general, B1 ∩ B2) are the common spectral measurements.
Note that these measurements are common only in their power.
B = B2 \ B1 = {λk+1, λk+2, . . . , λk+l} represents the
measurements available in B2 that are not available in B1.
We investigate the problem of building an estimator Γ(Z(B))
that best approximates the joint distribution P (Z(B)|Z(B1)),
where Z(B) is the data cube for the wavelength bands B.
Thus, we have:

Γ(Z(B)) ≈ P (Z(B)|Z(B1)) (2)

The value of building an estimator for P is clear particularly
in situations where S1 has been in operation for a much longer
period of time than S2. S1 may have fewer spectral channels
in which measurements are taken compared to S2. However,
it may be of scientific value to be able to estimate what the
spectral measurements in wavelengths B would have been if
S1 could have measured them.

The joint distribution given by P (Z(B)|Z(B1)) contains
all the information needed to recover the underlying structure
captured by the sensor S2. If perfect reconstruction of this joint
distribution were possible, we would no longer need sensor
S2 because all the relevant information could be generated
from the smaller subset of spectral measurements B1 and the
estimator Γ. Of course, such estimation is often extremely
difficult because there may not be sufficient information in
the bands B1 to perfectly reconstruct the distribution. Also, in
many cases, the joint distribution cannot be modeled properly
using parametric representations of the probability distribution
since that may require a significant amount of domain knowl-
edge and may be a function of the ground cover, climate, sun
position, time of year, and numerous other factors.

In the event that all k wavelength bands in S1 overlap with
a corresponding subset of k bands in S2, but S2 has bands not
available in S1, the estimation process is more straightforward.
When partial overlap occurs between two sensors for a given
wavelength, calculations need to be performed to estimate
the amount of power that would have been measured in
the overlapping bands. This can be done using interpolation
methods.

We now outline the procedure for creating a Virtual Sensor.
At a minimum, we assume that for sensor S1 we have
measurements Z1(B1) from one image, and for another sensor
S2 we assume that we have another image Z2(B2). The
procedure for creating a Virtual Sensor is as follows, assuming
that we need to build a predictor for channel bk+1 (recall that
k is the number of bands in B1):

1) Find parameters θ that minimize the
squared error (or another suitable metric)



[E[Γ(Z2(B1), θ)] − Z2(bk+1)]
2. This is the Virtual

Sensor model fitting step.

2) Apply Γ to the data from sensor S1 to generate an
estimate of E[Γ(Z1(bk+1), θ)]. This is the step where
the estimation of the unknown spectral contribution
occurs.

3) Evaluate the results based on science based metrics and
other information known about the image.

The procedure described above is standard in the data mining
literature. From the remote sensing perspective, it is interesting
to see the potentially systematic differences between the
performances of the estimator on data from sensors S1 and
S2. These will tell us how much the differences between the
overlapping bands of the two sensors affect the accuracy of
the Virtual Sensor relative to the true sensor.

IV. METHODS

For this paper, we used MultiLayer Perceptrons (MLPs) as
our model and the predicted output is always the 1.6 micron
channel. However, we experimented with several different sets
of inputs. As a baseline, we trained one MLP using as inputs
the five MODIS channels identified above just at that pixel.
However, we also constructed MLPs that use inputs from
each pixel’s 5x5 neighborhood. We experimented with two
different ways of constructing feature sets from this neighbor-
hood. In the first set of experiments, we performed Principal
Components Analysis (PCA) on the five input channels in
each 5x5 neighborhood (125 total features) and chose the
top five components as inputs to train one MLP and the top
ten components as inputs for another MLP. We also trained
one MLP to use all 125 features as inputs. In a second set
of experiments, we performed a PCA separately within each
of the five input channels’ 5x5 neighborhoods—this yields
25 features per channel. We trained one MLP to use to the
top principal component from each channel and another MLP
to use the top two principal components. Unlike the first
set of experiments, the second set ensured that each channel
contributes to the inputs. We hypothesized that this may yield
better results because performing PCA within each channel
may better capture texture variations within each channel,
which can aid in cloud detection.

V. RESULTS

All the MODIS data used in the analysis were geolocated
and gridded to a 1.25 km Equal Area Scalable Earth Grid
(EASE-grid) [4] containing the Greenland ice sheet and the
surrounding ocean (which is mixture of open water and sea
ice). Thirty-four MODIS images from the year 2000 and
2002 were processed. The models were trained on one image
from day 140 and tested on thirty-three MODIS images from
various days of the years 2000 and 2002 ranging from 140
to 246.1 This approach maximizes the range of differences in

1In this paper, we only discuss the results of validating with MODIS images
and not AVHRR/2 since the 1.6 micron channel is only available for MODIS
images and due to a lack of space.

TABLE I

ACCURACY OF CLOUD DETECTION (OVERALL)

Day/Time P 10ch P 10 P 5ch P 5 P All 5ch

140 1515 0.9316 0.8987 0.9329 0.9049 0.9356 0.9248
140 1830 0.9198 0.9095 0.9246 0.9079 0.9235 0.9207
141 1600 0.9287 0.9026 0.933 0.8998 0.9385 0.9283
141 1735 0.9213 0.9135 0.9291 0.9142 0.9275 0.9237
142 1505 0.9427 0.9222 0.9442 0.9232 0.9494 0.9365
142 1640 0.9264 0.9133 0.9301 0.9101 0.9342 0.9308
142 1820 0.9208 0.9181 0.9235 0.9148 0.929 0.9228
142 1955 0.9007 0.887 0.9038 0.8842 0.9066 0.8995
143 1545 0.9428 0.9221 0.9451 0.9195 0.9517 0.9406
143 1725 0.9298 0.9134 0.9332 0.9092 0.9389 0.9357
143 1900 0.9362 0.922 0.9402 0.9188 0.9449 0.9436
144 1450 0.9502 0.9062 0.9508 0.9066 0.9568 0.9369
144 1630 0.9255 0.9014 0.9306 0.8969 0.938 0.9264
144 1805 0.9268 0.8968 0.9316 0.8908 0.9349 0.9355
145 1355 0.949 0.9186 0.9483 0.9182 0.9547 0.9298
145 1535 0.9461 0.9199 0.9478 0.918 0.9542 0.9417
145 1710 0.9134 0.8901 0.918 0.8874 0.922 0.9159
146 1440 0.9551 0.9241 0.9553 0.926 0.9623 0.9499
146 1615 0.9366 0.9098 0.9387 0.9123 0.9473 0.9381
147 1345 0.9538 0.9286 0.9568 0.9299 0.9608 0.947
148 1610 0.929 0.8663 0.9311 0.8696 0.9371 0.9064
149 1650 0.927 0.8978 0.93 0.8983 0.9389 0.9209
149 1825 0.8872 0.8572 0.8955 0.8549 0.8957 0.8982
151 1950 0.8632 0.7483 0.8792 0.7177 0.8559 0.8723
152 1720 0.8718 0.8479 0.8792 0.8348 0.8907 0.8765
152 1855 0.7779 0.7218 0.7937 0.6993 0.7833 0.7899
153 1625 0.9274 0.8961 0.9295 0.8975 0.9409 0.9286

140 1440 0.9377 0.917 0.9403 0.9167 0.9463 0.9293
153 1550 0.9353 0.9027 0.9381 0.9004 0.9451 0.9355
168 1505 0.9294 0.8905 0.9309 0.8892 0.9401 0.9127
213 1435 0.8969 0.8518 0.8939 0.8714 0.9065 0.8458
226 1405 0.9266 0.8835 0.9196 0.8847 0.9279 0.8828
246 1520 0.8743 0.8484 0.8758 0.844 0.8819 0.8535

MEAN 0.9194 0.8893 0.9229 0.8870 0.9273 0.9146
STD 0.0337 0.0452 0.0310 0.0506 0.0346 0.0338

time of year between the training and test images and allows
for analysis of how much prediction loss occurs as a result of
this difference.

Table I gives the accuracies of detecting cloud cover (frac-
tion of pixels classified correctly) in the various test images.
Table II gives the accuracies in each image just over the
Greenland ice sheet and Table III gives the accuracies over
water. A threshold of 0.2 was used on the MODIS channel
6 images. That is, a value of at least 0.2 is considered to
imply that a cloud is present while a threshold of less than
0.2 implies that a cloud is not present. The threshold of
0.2 was chosen because the MODIS cloud mask team uses
this threshold. The first column gives the day (which day of
the year out of 365) and time (in 24-hour time) when each
image was taken. The first 27 images were taken in the year
2000 while the remaining six images were taken in 2002. The
second column (“P 10ch”) gives the results of taking the top
two principal components in each of the five input channels.
The third column (“P 10”) gives the results of taking the top
ten principal components across all the input channels. The
fourth column (“P 5ch”) gives the results of using the top
principal component in each of the five input channels. The
fifth column (“P 5”) gives the results of using the top five
principal components across the five input channels. The sixth
column (“P All”) gives the results of using all 125 principal



TABLE II

ACCURACY OF CLOUD DETECTION (ICE SHEET)

Day/Time P 10ch P 10 P 5ch P 5 P All 5ch

140 1515 0.9418 0.9127 0.9423 0.9208 0.9438 0.935
140 1830 0.9125 0.9221 0.9174 0.9215 0.9179 0.8959
141 1600 0.9196 0.9001 0.9256 0.9012 0.9319 0.9124
141 1735 0.895 0.8925 0.9083 0.8952 0.9018 0.8916
142 1505 0.9477 0.9362 0.9494 0.9374 0.9509 0.9439
142 1640 0.9014 0.8868 0.9077 0.8824 0.9118 0.9058
142 1820 0.9052 0.9099 0.9067 0.9077 0.9126 0.8969
142 1955 0.8768 0.8755 0.8791 0.8757 0.8796 0.867
143 1545 0.9413 0.9305 0.9428 0.928 0.948 0.9423
143 1725 0.9289 0.9098 0.9307 0.9059 0.9309 0.9349
143 1900 0.9381 0.928 0.9427 0.9271 0.9425 0.9486
144 1450 0.9584 0.9434 0.96 0.945 0.96 0.9593
144 1630 0.9084 0.9031 0.9147 0.9016 0.9233 0.9114
144 1805 0.9162 0.8988 0.9215 0.8967 0.9249 0.9299
145 1355 0.9674 0.962 0.9677 0.9622 0.9713 0.9672
145 1535 0.9617 0.9521 0.962 0.952 0.9668 0.9628
145 1710 0.9116 0.8977 0.9135 0.8963 0.9196 0.9039
146 1440 0.9695 0.9639 0.9706 0.9655 0.9744 0.9656
146 1615 0.9509 0.9496 0.9538 0.9508 0.9581 0.9533
147 1345 0.9519 0.939 0.9566 0.9438 0.9596 0.9453
148 1610 0.9506 0.9125 0.96 0.917 0.9573 0.9574
149 1650 0.936 0.9257 0.9376 0.9249 0.9453 0.9408
149 1825 0.8528 0.8313 0.8601 0.8307 0.8598 0.8783
151 1950 0.8306 0.7798 0.8539 0.7691 0.8278 0.844
152 1720 0.8501 0.8395 0.8581 0.8237 0.8706 0.8589
152 1855 0.761 0.7076 0.783 0.689 0.759 0.7811
153 1625 0.9392 0.9174 0.9405 0.922 0.9498 0.9414

140 1440 0.9372 0.9283 0.9388 0.9295 0.942 0.9308
153 1550 0.9388 0.9166 0.9428 0.9186 0.9468 0.9392
168 1505 0.9189 0.9029 0.9238 0.899 0.9314 0.914
213 1435 0.8773 0.8513 0.8811 0.8769 0.8919 0.8389
226 1405 0.94 0.8947 0.9294 0.9025 0.9374 0.8938
246 1520 0.8653 0.8638 0.8689 0.8611 0.8726 0.8477

MEAN 0.9197 0.8995 0.9197 0.8994 0.9219 0.9133
STD 0.0443 0.0513 0.0402 0.0548 0.0446 0.0432

components and the seventh column (“5ch”) gives the results
of using just the original five input channels. These results
show that spatial information helps, especially if all five input
channels are given a chance to present inputs. In particular,
the methods that use the principal components in each channel
separately consistently outperform the methods that use the top
principal components overall. Using all 125 features performs
best, but the running time is substantially greater than for all
the other methods, which is a significant concern since one
would like to use these models to generate predictions for
large data archives.

VI. CONCLUSION

In this paper we have presented some preliminary experi-
ments that augment the Virtual Sensors method with spatial
information. This continues our previous work, which was
aimed at aiding in the discrimination of clouds from snow and
ice. This is a challenging problem that is essential to solve in
order to map the cryosphere using visible and thermal imagery.
Clouds often have spectral reflectances and temperatures sim-
ilar to snow. Most cloud detection algorithms operationally
employ a series of spectral threshold tests to determine if a
pixel is clear or cloudy. Having a channel centered around 1.6
microns has significantly improved the ability to discriminate

TABLE III

ACCURACY OF CLOUD DETECTION (WATER)

Day/Time P 10ch P 10 P 5ch P 5 P All 5ch

140 1515 0.9232 0.8872 0.9251 0.8918 0.9288 0.9124
140 1830 0.9259 0.8988 0.9306 0.8964 0.9282 0.9254
141 1600 0.9373 0.9049 0.9401 0.8984 0.9448 0.9364
141 1735 0.9443 0.9319 0.9473 0.9308 0.95 0.9467
142 1505 0.9381 0.9095 0.9396 0.9103 0.9481 0.9274
142 1640 0.9517 0.9404 0.9529 0.9383 0.957 0.954
142 1820 0.9349 0.9254 0.9386 0.9212 0.9437 0.9394
142 1955 0.9197 0.8962 0.9235 0.8909 0.9281 0.9084
143 1545 0.944 0.9151 0.947 0.9124 0.9548 0.9394
143 1725 0.9306 0.9167 0.9355 0.9122 0.9461 0.9397
143 1900 0.9347 0.9172 0.9382 0.912 0.947 0.9418
144 1450 0.9433 0.8747 0.9429 0.874 0.9541 0.9183
144 1630 0.9432 0.8996 0.9469 0.8921 0.9532 0.9378
144 1805 0.9357 0.8951 0.94 0.8858 0.9433 0.9415
145 1355 0.9293 0.8723 0.9277 0.8711 0.937 0.8868
145 1535 0.9332 0.8934 0.9361 0.8901 0.9439 0.9228
145 1710 0.9152 0.883 0.9222 0.8792 0.9242 0.9185
146 1440 0.9423 0.8888 0.9417 0.8909 0.9516 0.9322
146 1615 0.9222 0.8699 0.9236 0.8737 0.9366 0.9237
147 1345 0.9561 0.9154 0.9571 0.9123 0.9622 0.9334
148 1610 0.9163 0.8393 0.9142 0.8418 0.9253 0.8793
149 1650 0.9149 0.8602 0.9198 0.8625 0.9301 0.8932
149 1825 0.9362 0.8939 0.9457 0.8893 0.9467 0.9438
151 1950 0.9003 0.7124 0.9081 0.659 0.8879 0.9023
152 1720 0.8979 0.858 0.9047 0.8481 0.9149 0.8978
152 1855 0.8014 0.7416 0.8085 0.7137 0.8171 0.817
153 1625 0.9121 0.8687 0.9153 0.8658 0.9293 0.9119

140 1440 0.9382 0.9075 0.9416 0.906 0.95 0.9231
153 1550 0.9321 0.8896 0.9338 0.8833 0.9434 0.9259
168 1505 0.938 0.8804 0.9366 0.8813 0.9472 0.9066
213 1435 0.9134 0.8523 0.9047 0.8667 0.9189 0.8487
226 1405 0.914 0.8731 0.9104 0.8682 0.9189 0.8715
246 1520 0.8816 0.8358 0.8814 0.8299 0.8895 0.8577

MEAN 0.9243 0.8803 0.9267 0.8757 0.9334 0.9141
STD 0.0269 0.0462 0.0264 0.0541 0.0267 0.0306

between clouds and snow using new sensors such as MODIS
and AVHRR/3. Unfortunately, a vast amount of data have
been collected before these sensors existed that did not have a
channel designed to detect clouds over snow and ice-covered
surfaces. These data sets have large importance for climate
studies since they provide over 20 years worth of observations.
Thus, being able to improve the cloud masking abilities of
these previous sensors will allow for improved monitoring of
several cryospheric variables, such as surface albedo, surface
temperature, snow and ice cover.
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